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Perturbed harmonic oscillator ladder operators: 
eigenenergies and eigenfunctions for the 
X 2  + hX2/(1 + gX2) interaction 

N Bessis, G Bessis and G Hadinger 
Laboratoire de Spectroscopie Thtorique, Universitt Claude Bernard, Lyon I, 
69622 Villeurbanne, France 

Received 4 May 1982, in final form 27 July 1982 

Abstract. The perturbed ladder operators method is applied to the resolution of the 
perturbed harmonic oscillator wave equation for the case where the perturbation is 
expandable in a convergent series of Hermite polynomials Hk, i.e. when 

v ( x ) =  b 2 X 2 + C  ckHk(b"2x). 
4 

It is found that the use of an Hermite polynomials basis, together with the use of binomial 
coefficient functions in the quantum number, greatly simplifies the determination of the 
perturbed ladder and factorisation functions. Thus, one obtains analytical expressions of 
the eigenenergies and eigenfunctions up to any order of the perturbation, without increas- 
ing intricacy. Thorough calculation has been given for a perturbing potential V ( X )  function 
even in X. As an illustrative application of the procedure, the resolution of the Schrodinger 
equation with a potential function Y ( X )  = X 2  + hX2/(1 + gX2), g > 0 is reinvestigated. 

1. Introduction 

In the present paper, the perturbed ladder operators method (Infeld and Hull 1951, 
Bessis et a1 1978, 1980, 1981, to be referred to as I, I1 and 111, respectively) is 
reformulated in order to be efficiently applied to the resolution of eigenequations 
which can be viewed as perturbed harmonic oscillator equations. The resolution of 
the one-dimensional Schrodinger equation 

(d2/dX2 - V ( X )  + % ) $ ( X )  = 0 -co<X <co (1) 

V ( X )  = X 2  + AXZ/( 1 + gX2) g'0 ( 2 )  

with the following interaction potential 

will constitute the motivating example of this necessary reformulation. 
As pointed out elsewhere this type of interaction is of interest in several areas of 

physics which have been summarised by several authors (see, for instance, Mitra 1978 
and Kaushal 1979). In particular, this type of potential occurs when considering 
models in laser theory (Risken and Vollmer 1967, Haken 1970), and in quantum field 
theory with a non-linear Lagrangian (Biswas et a1 1973). Moreover, for particular 
negative values of A ,  this two-parameter potential could be used as a model of a double 
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well potential. On the other hand, from a computational point of view, this type of 
potential is a particular illustration of the difficulties encountered when solving the 
problem by the straightforward variational or perturbational procedures (Mitra 1978, 
Kaushal 1979, Hautot 198 1). More efficient variational treatments, either using a 
refined non-perturbative Hill method (Hautot 1981) or using properly scaled (in A 
and g) harmonic oscillator functions as a basis set (Bessis and Bessis 1980), have been 
applied. Results obtained are, on the whole, in accordance with those given by Mitra. 
Recently, Flessas and others (Flessas 1981, Varma 1981, Whitehead et a1 1982, Lai 
and Lin 1982) have also shown the existence of a class of exact solutions for particular 
values of A and g. 

Since V ( X )  is readily expandable in powers of X 2 ,  one could naively consider 
that the solution of the eigenequation (1) is straightforward either by the classical 
Rayleigh-Schrodinger perturbation scheme or by the perturbed ladder operators 
scheme. Nevertheless, the perturbation series does not converge for any values of A 
and g. In the present paper, it is shown that this difficulty can be overcome as long 
as the potential function can be expanded in a convergent series on the basis of the 
Hermite polynomials. Therefore, the eigenequation (1) is considered as a perturbed 
harmonic oscillator type wave equation and the perturbed ladder operators method 
is applied to the solution of the eigenequation 

b 2 X 2  -1 C2kH2k(b ' " X )  + 8 
k 

(3) 

where the 'scaling real parameter' b is introduced in order to improve the zeroth-order 
harmonic Hamiltonian (Bessis and Bessis 1980). 

The principles of the perturbed ladder operators method are briefly recalled in 
02. In §3, an improved formulation of the method is presented which leads to compact 
analytical expressions of the ladder operators, factorisation function, eigenvalues and 
eigenfunctions of equation (3) in terms of the quantum numbers. Indeed, many 
simplifications occur when introducing an 'Hermite polynomial basis' as the working 
basis instead of the usual X "  basis. Then, finding the A -  and g-dependent eigenvalues 
and eigenfunctions for the potential function ?"(XI, up to the Nth  order of the 
perturbation, is a simple matter of straightforward application of the preceding 
formulae: the only preliminary step is to compute the expansion coefficients of V(X) 
on Hermite polynomials (64). Since extensive numerical results have already been 
published for a large range of values of A and g (Hautot 1981, Bessis and Bessis 1980 
and references therein), we found it unnecessary to give numerical results again. In 
§§3 and 4, our attention has been focused on the case of the harmonic oscillator 
perturbed by a potential function even in X. In the last section (0.9, the formulation 
is extended to the case of a perturbing potential function without any defined parity 
in X .  

2. The perturbed ladder operators method 

Let us consider a second-order differential eigenequation which has been first reduced 
to the standard form 
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associated with the boundary conditions (XI s x c x2) 

where m and j are quantum numbers which take successive discrete values labelling 
the eigenvalues and eigenfunctions. 

In previous papers (see I-111), it has been shown how, by starting from an 
unperturbed problem with a potential function U'O'(x, m )  leading to a factorisable 
equation, one can build up perturbed ladder and factorisation functions K ( x ,  m )  and 
L ( m )  allowing the factorisation of eigenequation (4), up to a given order N of the 
perturbation, Writing the potential, the ladder and the factorisation functions in series 
of the perturbation parameter q, one obtains 

~ ( x ,  m ) =  P ( x ,  m)+qU"' (x ,  m)+q2U"' (x ,  m)+. . . + q N ~ i N 1 ( ~ ,  m )  

K ( x ,  m)=K'"(x ,  m)+qK'* ' (x ,  m)+q2K'2'(x,  m ) + .  , .+q K ( x ,  m )  

L(m)=L'O'(m)+qL"'(m)+q L ( m ) + .  . .+q L ( m )  

where U''' is one of the six Infeld-Hull exact factorisation types and K'O' and L"' 
are the associated ladder and factorisation functions allowing the factorisation of 
equation (4) with U'''. 

As has been already outlined in paper 111, the necessary and sufficient condition 
to be fulfilled by the required functions is, at each order N of the perturbation, 

A{[d/dx - 2K'O'(x, m)]K"'(x,  m ) } -  2(d/dx)K"'(x, m + 1) 

(6) N (N) 

2 12' N ( N I  

N-l  

(76 1 = - ~ " ' ( x ,  m )  +L'"(m) + 1 ~ ( " ' ( x ,  m )K  ( N - v )  (x, m )  
"= l  

where A is the usual first difference operator in m so that 

AF(m) = F ( m  + 1) - F ( m ) .  (8) 
Of course, specific expressions for the U'") ,  K'" '  and L'"' correspond to each exact 

Infeld-Hull factorisation type. The finite-diff erence aspect in m of equation ( 7 a )  
determines the m-dependence of the functions while its differential aspect in x deter- 
mines their x-dependence. These equations are solved recursively: i.e. when determin- 
ing K"' and L"', it is assumed that all the K'"' and L'"', for v = 1 , 2 ,  . . . , N - 1, 
have already been found. The first equation ( 7 a )  is used to determine the ladder and 
factorisation functions K(N' (x ,  m) and L"'(m). Once they are known the potential 
functions U"'(x, m )  are given by (76) and one obtains the required 'factorising' 
potential function U(x, m )  of the eigenequation (4). 

Thus, one can solve physico-mathematical problems with a potential function 
V(x ,  m )  such as 

(9)  
where V'O'(x, m )  = U'O'(x, m )  and the V'"'(x) have the same dependence in x as the 
U'"'(x, m ) .  In order to match V(x ,  m )  with the factorising potential U(x, m ) ,  one 

~ ( x , m ) =  V ' o ' ( x , m ) + q V ( 1 1 ( x ) + q 2 V ( 2 ' ( x ) + .  . .+q N v (N) ( x )  
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has to resort to the ‘artificial’ factorisation process. One considers the V(x, m )  
potential as ‘embedded’ in a potential function U (x, m, p )  which depends on a supple- 
mentary ‘artificial’ parameter p such that u(x, m, p )  can be identified in m with 
V(x, m )  and that U (x, m, p = m )  = U(x, m ) .  Then the following condition must hold, 
for any x, 

~ ‘ ” ’ ( x )  = ~ ‘ ” ’ ( x ,  m = p ) .  (10) 

Finally, one can factorise an eigenequation (4) with a given potential function V(x, m )  
by determining the associated perturbed ladder and factorisation functions which are 
solutions of the difference-differential equation ( 7 a )  and satisfy the following condition 

(d/dx - ~ K “ ’ ( x ,  P ) )K‘~’ (x ,  p )  

Thus, the perturbed ladder and factorisation functions K‘”’(x, m ; p )  and 
L‘”’(m ; p )  associated with the ‘embedding’ potential U (x, m, p )  both depend on the 
parameter p. Once they are known, the perturbed problem (up to the N t h  order) 
may be handled in the same way as the exact factorisable (unperturbed) problem. 
The necessary condition for the existence of quadratically integrable wavefunctions, 
i.e. the quantisation condition, is E ( j  - / m  I) = ZI = integer 3 0 where E = 1 (or E = -1) 
according to whether the zeroth-order factorisation function L‘”(m) is an increasing 
(or decreasing) function of m. The required total eigenvalues are obtained from L ( m )  
by setting m = j + $ + $ E  and CL = m in the expression of L(”’(m, p )  

(12 )  A .  im =L‘’’(m = j + i + & ) +  C ~ y L ( y ’ ( m  = j + z + t s ; p  = m ) .  

The required eigenfunctions with the given potential V(x, m )  can be obtained from 
the knowledge of the perturbed ‘key function’ Ccljj either stepwise by the use of the 
ladder operators H i  =K(x,  m ;  p ) T d / d x  or by the use of a three-term recursion 
relation (see paper 11). They can also be obtained as a linear combination of the 
unperturbed functions (see paper 111). In the present paper an alternative and more 
direct procedurt: is proposed. 

1 
N 

” = l  

3. Eigenvalues and eigenfunctions of the perturbed harmonic oscillator 

The wave equation (3) for an harmonic oscillator perturbed by a potential function, 
even in X, can be conveniently written 

N 
--b2X2+ b ( 2 m  + 1) - b  V‘”’(b’/2X) +bhj,,,)$,, = 0 

u = l  

with -m<X < and 

TheHZk(x)  are Hermite polynomials and the factor k ! / ( 2 k ) !  = ( - )k (H2k(0 ) ) -1  has been 
introduced for computational convenience. Concerning the actual choice of the set 
of upper bounds S,, see equation (21 )  and the associated commentary. 
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For (N = 0)t the wave equation (13) reduces to the factorisable (Infeld-Hull type 
D )  wave equation with 

x = b'IzX 

~ " ' ( x ,  m) = x 

Therefore, the harmonic oscillator eigenvalue is 

Ui0'(x, m)  = xz  - (2m + 1) 
(15) 

L'O'(m) = -2m m - j = U = positive integer. 

E?' = 6 (2m + 1) + b A:'' = 26 (U + 1 / 2 ) .  

+:o'(X) = ( b / 7 ~ ) ' / ~ ( l / 2 " ~ ! ) ~ ~ ~  e ~ p ( - b X ~ / 2 ) H , ( b ' / ~ X ) .  (17) 

(16) 

The normalised harmonic oscillator eigenfunctions are 

3.1. m-dependence of the perturbed ladder and factorisation functions K"'(x, m )  and 
L"'(m) 

Since the perturbed potential function of the eigenequation (13) is even in x ,  for the 
sake of simplicity we apply the perturbation scheme with a factorising potential function 
V(x, m )  even in x. The general case is examined in § 5 .  Following from the factorisabil- 
ity conditions (7) and from parity considerations, it can be directly inferred (see paper 
111) that the perturbed ladder function is odd in x and one can set 

SN 

~ " ' ( x ,  m ) =  C yk21(m)Hzr+l(x) (18) 
t = O  

where the ykyJ1 ( m )  functions have to be determined in order to satisfy condition (7a).  
When using the above expression of K"' and expression (15) of K"', it follows 

that both sides of the factorisability condition (7a)  are x-polynomials of even parity 
and, thus, can be expanded on the basis of the Hermite polynomials (HZr(x)).  The 
familiar properties of the Hermite polynomials can be used (see equation (A1.4) of 
appendix 1) and when equating the coefficients of H Z r ( x )  on both sides of equation 
(7a) ,  one gets for t = 0 to SN, the finite difference equation to be satisfied by the 
required ykyil functions 

AykyJ1 (m) = -4(2t+3)ykyJ3(m)-Awky'!z(m). (19) 
The wiyJz ( m )  functions originate from the preceding orders of the perturbation and 
are defined by 

Details of their calculation is given in appendix 2. 
It should be noted that, while at the first order N = 1 of the perturbation, the 

upper bound SI which is involved in K"'(x, m )  can be chosen arbitrarily, this is not 
true for the higher SN. Indeed, owing to the presence of the term (20) in the 
factorisability condition (7 1, it is found that the following condition must be fulfilled 
(see appendix 2) 

SN = NS1. (21) 
+ Indeed Xt=1= 0 since its algorithmic signification corresponds to the neutral operation for the addition. 
Thus the equation (13) is also valid for N = 0. 
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The finite difference equation (19)  can be solved recursively, the integer t descending 
stepwise from t = SN down to zero. It is easily inferred that both y!iyll ( m )  and w;yJ2 
are polynomials in m of degree (SN - t )  (see appendix 2). From the factorisability 
condition ( 7 a ) ,  it follows that L”’(m) is a polynomial in m of degree (SN + 1). 

As will be seen afterwards, it is rewarding to use Newton’s backward formula (Jordan 
1965) and to set 

where p is the ‘artificial’ parameter of the ‘embedded factorisation’ procedure and 
the ( y )  are binomial functions. This expansion is to be preferred to power expansion 
in m, since the binomial functions satisfy the simple difference equation A(?) = (k?l). 

Finally, following from the above considerations, the total ladder and factorisation 
functions can be written 

where the coefficients A:”,’,l(u) =[Au-ykl’+l(m)],=,-u and a?) have to be found. 
At this stage of the calculation, rather than determining the coefficients A k ; L 1 ( u )  

by solving the finite difference equation (19) ,  it is more convenient to take advantage 
of the knowledge of the m-dependence of the K‘”’(x,  m )  and to solve in x the 
factorisability condition (equations ( 7 a )  and ( 1  1)) .  

3.2. x-dependence of  the perturbed ladder function p” ’ (x ,  m )  

Let us set 

)Pi;“’ ( x  1 ~ ‘ “ ’ ( x ,  m )  = U = o  ( U  

m - p S u - 1  

From the factorisability condition ( 1  l ) ,  one gets 

(d/dx - ~ x ) P ~ ~ ’ ( x ) = - V ( ~ ’ ( X ) + ( Y ~ ~ )  +QbN’(X).  (27) 

After substituting for K”’, X ~ Z ~ K ‘ ” ’ K ” - ” ’  and L”’ from equations (24) and 
(23) into the factorisability condition ( 7 a ) ,  and equating the coefficients of the 
binomials (m-r*‘‘) on both sides of (7a )  one finds, for U = 0 to SN - 1, 

(d/dx - ~ x ) P “ , : ( x ) = ~ ( ~ / ~ x ) P L ; Y ’ ( x ) + ( Y ~ ~ , N , :  +Q;?\(X). (28) 
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Owing to the raising property of the operator (dldx - 2x) when acting on Hermite 
polynomials (see appendix l), the left sides of the expressions (27) and (28) do not 
involve the Hermite polynomial Ho(x).  Consequently 

where the symbol [ IH0 denotes the projection of the inner part of the bracket onto 
the Hermite polynomial Ho. 

When introducing the right inverse integral operator 3 of (d/dx -2x) (see 
equations (A1.5) and (A1.6)) one gets 

PbN’(x) =d[Qkv’(x)  - V“’(X)] (30) 

(31) PLY\ (x)  = 6[2(d/dx)P‘,“’(x) +a‘;“,\ (x)] 

where QbN’(x) and the QL:’:(x) are known in terms of the P t ’ ( x )  generated in the 
preceding orders of the perturbation (see appendix 2). NOW, applying successively 
the relation (30) for N = 1, N = 2, . . . , one directly obtains the Pb”(x), Pf’(x),  . . . 
and PbN’(x) functions in terms of the perturbing parts V‘”’(x) of the potential function 
V(x) which contains the parameters of the physico-mathematical problem under 
consideration. The repeated use of the relation (31) yields the expression of the 
PLY\ (x) in terms of the Pb“’(x), v = 1 to N. One finds 

P:”(x) = ( 2 8  d/dx)”PbN)(x) + y1 ( 2 8  d/dx)‘8Q:”i’,(x). (32) 

The expansion of PLN)(x) on the Hermite polynomials basis, i.e. the expressions of 
the coefficients AiyJl ( U )  in equation (25), are obtained from the operator relations (30), 
(32) and (A1.7). One finds 

1=0 

1 IN) A:~~,(U)=(-)u(2‘+’-u(2t  + l)!!)- d 2 r + 2 u + 2  

(2t +2u  -2cT + l)!!  
B E 2 U + 2 - 2 m  (g 1 - 2 (-4)- 

u = o  (2t + l ) ! !  (33) 

where u = O  toSN and t = O  to S N - u .  
The dh?’ are the coefficients of the perturbing part V”’(X) of the ‘physical’ 

potential (14) and the Bh?’(u) coefficients are known in terms of the A&L1(u) 
coefficients of the preceding orders of the perturbation (see appendix 2) 

x h(2k + 1,2q + 1; 2t)A:”~+1(s)A~~; ,”’(a)  (34) 

where U = 0 to S N  and t = 0 to (SN - U + 1). The coefficients h ( 1 originate from the 
expansion of the product of two Hermite polynomials as a linear combination of 
Hermite polynomials (see equation (Al.3)).  

For practical computation, it is convenient to include the whole perturbation of 
the potential in V “ ’  and write V(x,  m) = U‘’’(X, m ) +  V“’(x,  m) i.e. dk? = d 2 k  and 
d:y,‘ = O  for Y 2=2. For N = 1, since the Bh’,’(u)=O, the expression (33) reduces to 

(35) 
r + l - u  A y r ! + , ( U ) =  ( - ) “ [ 2  (2 t+  l)!!]-ld2r+2u+2. 
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For N 2 1, one obtains 
U 2 2 ” - 2 1 ( 2 t + 2 U - 2 1 + l ) ! !  

A$:+!I(u) = 1 ( - ) ‘ - I + ’  & 2 2 u - 2 1 + 2 ( u .  ( 36 )  
I=O (2 t  + l ) ! !  

Finally, the B“’ and A“’ are determined recursively in terms of the d2k ,  via the 
B‘”’ and A‘”’ (v = 2 to N - 1) already found, by means of relations ( 3 4 )  and ( 3 6 )  and 
the analytical expression of the total ladder function follows from ( 2 3 ) .  

3.3. Eigenvalues of the perturbed harmonic oscillator 

The eigenvalue b h j ,  of the eigenequation (13) is directly obtained from equation (12 )  
and expression (23 )  of L(m). After setting m = j ,  p = m and introducing the quantisa- 
tion condition m - j = U in the expression of L(m ), the perturbed harmonic oscillator 
eigenvalue is obtained 

where 
S ” + l  

U =o U 
E:’ = b  1 (-)”( 

The a:) coefficients ( U  = 0 to U ;  v = 1, N) have to be calculated in terms of the 

From equations ( 2 9 ) ,  (25)  and (241, one gets 
potential coefficients d:Yk). 

( 3 9 )  

The way of calculating the B‘”’  has been detailed in the preceding section. As 
previously done, we set d$y = d2,, and d:”,‘ = 0 for v 2 2. 

At the first order of the perturbation (N = l), B‘” = 0 ,  ab” = 0 ,  (Y:” = ( -2)“d2,  
and one gets 

where u 1  = min(S1 + 1, t i ) .  

At the N t h  order of the perturbation, one finds 

ELN) = b (”> f (-)‘+122u-21(2U -21 - l)!!&:LzI(l) 
u = o  U I=O 

where UN = min(SN + 1 ,  U )  = min(NS1 + 1, U). 
For the sake of computational simplification, it is convenient to perform the 

inversion of the sumE;:” (Jordan 1965). Thus, one gets the following expression (v 2 2)  
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68 
3 

Ei2’ = 3Ei2’ -3Ei2’ +EL2’ - 24d2ds+-d: + 

It is worthwhile to compare expression (40)  of the first-order energy with the usual 
expression 

(44)  

which is obtained when expanding the perturbation as a series X;1C;tX2‘ instead of a 
series Z,u ! / ( 2 u ) !  d2,HzU(x) .  Obviously, formula (40)  which involves only one summa- 
tion is more compact than formula (44).  This simplification is not a matter of algebrai? 
manipulation, it is a telescopic effect: indeed, the two series are not equivalent unless 
the purely mathematical assumption S1 + 00 holds. Furthermore, it is well known that 
the nth degree least-squares polynomial approximation to a function f ( x )  over 
(-CO, +CO), relevant to the weighting function w ( x )  =e-’* is defined as a series of 
Hermite polynomials H,(x )  with r = 0 to n (Hildebrand 1956). Thus the expansion 
of the perturbation on the Hermite polynomial basis constitutes a rearrangement of 
the x *‘ which obviates the difficulties of convergence. This simplification still persists 
at the higher orders of the perturbation. 

3.4. Eigenfunctions of the perturbed harmonic oscillator 

Let us now consider the determination of the eigenfunctions of equation (13)  in the 
form 

with 

Keeping in mind that the 4:’’ wavefunctions are solutions of the unperturbed 
eigenequation associated with the eigenvalues E:’’ = 2b ( t  + t ) ,  one can write, at each 
order N of the perturbation, 
T , + V  N TN_,+u 

1=0 ” = l  I=o 
C 2 b ( ~  - ~ ) ( 2 ~ f ~ ) 1 ’ 2 ~ ~ ~ ’ ( ~ ) ~ ~ ’  = 1 (V‘” - E r ’ )  ( 2 * t ! ) ’ ’ * ~ ~ ~ - ~ ) ( ~ ) $ ~ ’ .  (46)  

From this expression and the expansion (14)  of the V‘”’ on the Hermite polynomial 
basis together with the expression (17)  of the $jo’ functions, one finds 
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where T, 2 2s“ + TN-,  + 2 i.e. TN = 2 N ( S 1  + 1 ) ;  the h ( ) are the coefficients involved 
in the product of two Hermite polynomials (equation ( A l . 3 ) )  and analytical expressions 
of the energies El“’ in terms of the potential parameters d 2 k  have been determined 
in the preceding section. 

This expression stands for t # U ; for t = U, one can determine the a:N’ (u)  coefficients 
from orthonormalisation considerations. Indeed, we must impose 

Since the unperturbed functions $Loi are orthonormalised, one gets the following 
expression 

A s  was previously done, we set dh? = dzU and d:”’ = 0 for v 2 2. 
Particularly, for N = 1 and U = 0, 1 , 2 ,  3 ,  one gets the following expressions 

4. Illustrative application 

Let us now consider the resolution of the eigenequation ( 1 )  viewed as a particular 
case of the eigenequation (13) .  We set 

V ( X )  = b 2 X 2 +  ( 1  - b 2 ) X 2 +  ( A / g )  - ( A / g ) ( l  +gX2)-’. (51 )  

The last terms of V ( X )  are expandable as convergent series of Hermite polynomials 
(see appendix 1). 

Thus, one gets 

A A V ( X )  = b 2 X 2  + -(  1 - C O )  +- 
g 

C2)Hz(b 1 / 2 X )  - - 1 C 2 k H 2 k  ( b  1’2x). 
g k = 2  

( 52 )  

The resolution of the eigenequation ( 1 )  amounts to the resolution of the eigenequation 
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(13) with the following correspondence 

i5 =E,,,, + ( A / g ) ( l  - CO) + (1 - b2) /2b ,  d2=-(2A/gb)C2+(1 - b 2 ) / 2 b 2 ,  
(53) 

The basic integrals 1, have been previously calculated (Bessis and Bessis 1980): 

(2s - l)!! 
( ;)U- 

-- 

where IO is defined in terms of the complementary error function 

Io  = &(b/g)”’ eblg erfc[(b/g)”’]. 

One gets 

dz= - ( A / g b ) [ I o ( S + b / g ) - b / g ] + ( l  - b 2 ) / 2 b 2  

and for k 3 2  

d Z k = - - - T [ ( - : )  A 1  
k I o -  k - l  (2s - l ) ! !  ( -- ;)*‘I 

gb k .  s = o  2’ 

( 2 k ) ! ( k  - U ) !  - 2  d2k-2u. 
u = i  k ! 2 2 “ ~ ! ( 2 k - 2 ~ ) !  

Particularly 

(54) 

(57) 

Once the d Z k  coefficients have been calculated in terms of the potential parameters 
A ,  g and b, the expressions of the energies, up to a given order N of the perturbation, 
directly follow from relation (42 ) .  Particularly, for S1 = 2 ,  explicit expressions are 
obtained, at the first and second order of the perturbation from relations (43). For 
the states U = 0 to 3, one finds again the expressions of the first-order energies already 
calculated in our previous paper (Bessis and Bessis 1980, equations (22 )  and (23)). 

The expressions of the associated eigenfunctions, up to a given order N of the 
perturbation, follow from 8 3.4. For the states U = 0 to 3, they are given explicitly in 
terms of the potential parameters by relations (50), ( 5 6 )  and ( 5 8 ) .  

5. Formulae for a perturbing potential function of any parity 

Even though some of the formulae have been given in 883 and 4 for the specific case 
of a perturbed harmonic potential function, even in X, the same technique is easily 
extendable to the case of any perturbing potential function which can be expanded 
in a series of Hermite polynomials H,,(x) of both parities. Indeed, let us consider 
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again the solution of eigenequation (13) with 
2S,+2 

V‘”’(b1/2X) = 1 C‘”’ k Hk(b1’2X). 
k = l  

(59) 

Using the same notations as in § 3, it is found that the expression (23) of the 
factorisation function L ( m )  is still valid, and that the expressions (24) of the ladder 
function K”’(x, m )  and of the product Zr=-: K‘”’K”-”’ still hold when setting 

rM 

PLN’(x) = 1 AjN’(u)Hf(x) ,  rM 2 ( s N  - ) + 1 
r = O  

and SN = NS1. 
Relations (27)-(32) remain unchanged. The only change occurs in the expressions 

of the Aj”(u) and B ~ ” ( u )  coefficients. Their respective expressions (33) and (34) 
have to be simply generalised in the following way 

( f  +2u)!! U (224 - 2 c r + f ) ! !  (N) 
Bt+2u-2u+l (cl (61) r ! !  A I“’ (U ) = (-4) C l L  - 1 (-4)”-“ 

t ! !  u = O  

with k M  = 2(S, - s )  + 1 ; qM = 2(SN-, - cr) + 1. Introducing the above definitions of the 
Aj”(u) and B ~ ” ( U )  coefficients, the expressions (37)-(42) are still valid and can be 
used to calculate the perturbed harmonic oscillator energies. 

Proceeding to the calculation of the eigenfunctions, the same invariance of the 
formulae occurs for relations (45), (46) and (49): of course, since it was specialised 
to the even case, formula (47) has to be generalised by the following one 

TN-”+v 2S,,+2 a I”’ ( U )  = l N  1 ( u ~ ~ - ” ) ( c ) E ~ )  - 1 h ( u ,  s ;  ~ ) C ~ ’ U ~ ~ - ‘ ‘ ’ ( U ) )  (63) 
2b(t-u) v = l  s = o  u = l  

with TN = 2N(S1 + 1) 

6. Conclusion 

Although the prime motivation of our investigation has been to solve analytically the 
Schrodinger equation with the potential V ( X )  = X2 + AX2/(  1 + gX2),  in fact, we have 
elaborated new techniques for handling efficiently the perturbed ladder operators 
method. In doing so, we have bypassed some difficulties of convergence and simplified 
the computational algorithm. This has been possible by using an Hermite working 
basis instead of the familiar x basis and by introducing the associated integral lowering 
operator 6. The finite difference solution in m of the factorisation condition and the 
embedding process (via the artificial parameter p j have been greatly simplified by the 
consideration of binomial functions (“;”). For all these reasons, it follows that 
analytical expressions of the eigenenergies and of the eigenfunctions can be obtained 
up to the Nth  order of the perturbation without increasing intricacy. This last feature 
proves to be very useful when an elaborate perturbative resolution of the nuclear 
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diatomic vibration-rotation wave equation is needed. This case is encountered, for 
instance, in the determination of the centrifugal distortion contributions to the rota- 
tional spectra of diatomics when the radial dependence of the fine structure interaction 
terms are taken into account (Bessis and Tergiman 1982). 

One can conjecture that the procedure already outlined will be of great interest 
and efficiency when considering any wave equation which can be viewed as a 'perturbed 
factorisable' equation: very likely one has, for each kernel factorisable case under 
consideration, to work on the specific x-basis (Laguerre, Jacobi polynomials . . .), to 
introduce the associated integral lowering operator 8 and to choose the adequate 
finite-diff erence basis m-function. Results of this last investigation will be given 
elsewhere. 

Appendix 1. Some properties of the Hermite polynomials 

In the main text, we have used directly or indirectly the following properties of the 
Hermite polynomials. 

A l . l .  Definition 

The Hermite polynomial of degree n is written 

Conversely 

A1.2. Product of two Hermite polynomials 

~ ~ ( x ) ~ , ( x ) = y h ( u , s ;  t ) ~ , ( x )  
t = O  

where 

In particular, h (U, s; 0) = Su,2"u ! 

A1.3. Step and multistep operators 

(dldx -2x)Hn(x) = -H,+~(x) 

dHn(x)/dx = 2nHn-l(x). 

(Al . l )  

(A1.2) 

(A1.3) 

(A1.4) 

In order to solve equations (27) and (28) it is convenient to define, in the basis of the 
Hermite polynomials, an operator 8, right inverse of (d/dx - 2x), such that 

(d/dx - 2 x ) ~ H n ( x )  = H,(x). (A1.5) 
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Thus, 3 is defined, for n 1, by 
+cc 

bH,,(x) = -exz IX H,(y) e-” dy. (A1.6) 

It is easily found that, for n 3 1, one gets 

[2b(d/dx)]*H,,(x) = (-4)‘[(n)!! / ( n  -2t)!!]H,-2r(~) (A1.7) 

[2d(d/dx)lfbH,(x)  = -(-4)‘[(n - l ) ! ! / (n  -2t  - 1)!!]H,-zt-1 (x). 

A1.4. Expansion of a function f (x)  on the Hermite basis 

A real function f (x), defined for - a < x  < a and piecewise derivable, can be expanded 
as a convergent series on the basis of Hermite polynomials if the following integral 
(Dreszer 1975) exists: 

with 

(A1.8) 

(A1.9) 

Let us consider the particular case f ( x )  = (1 +gx2/b)-’. Using expansion (Al.l)  for 
the H 2 k  (x )  polynomials, one gets 

where, setting x = b’/2X, 

(Al.  10) 

( A l .  11) 

Appendix 2. Calculation of 2 r Z t  K‘”’K“-”’ 

From expression (18) of the ladder functions and using the relation (A1.3), one gets 
N-l  

K‘”’(x ,  m)K”-”’(x,  m )  
v = l  

u = o  
(A2.1) 
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where 

and h (  ) is the coupling coefficient of two Hermite polynomials. When comparing 
the values of the upper bounds in (A2.1) and in (20), it is found that the following 
necessary condition must hold 

S N  = s, f SN - (A2.2) 

and consequently, SN = N S I .  
At the first order N = 1 of the perturbation, since w“’(m) = 0, the starting function 

~ i ; \ + ~ ( m )  of the recursive process is the solution of the finite difference equation 
Ayys\+l ( m )  = 0 (equation (19)). It is easily inferred that y$!+l ( m )  is a polynomial in 
m of degree (S1  - f ) .  Then, the product yi:Yl (m)y\:’+l ( m )  is a polynomial of degree 
(2S1 - - t  -s). From (A2.1), it is easily seen that a given wi?(m) is generated from the 
products y ~ ~ ! + l y ~ ~ ) + l  such that s + f + l > u .  Thus, wi2,’(m) is a polynomial in m of 
degree (2S1 - U  + 1) = ( S 2 -  U + 1) and finally, both yiYjl ( m )  and wiyjz (m)  are poly- 
nomials in m of degree (SN - t ) .  

In the framework of the finite-diff erence calculus, the expressions (24) can be 
interpreted as Newton’s backward formulae for K”’(x, m )  and for ZIYK(Y iK(N-”) ,  
respectively with 

Pl;“’ (x)  = [A“K‘”’(x, m ) ] m = w - u  
(A2.3) 

N - 1  
Q‘,”(x) = 1 [A”K‘”’(x, m)K“-”’(x,  m)lm=cr-u. 

“ = l  

Using a discrete Leibnitz rule, i.e. the expression of the uth finite difference A” of a 
product, one obtains (Jordan 1965) 

N - 1  U 

Qifl’(x)= 1 1 )P1”’(x)PIN-”’(x). (A2.4) 
u = l  s=O r = O  u - t  

Few simple manipulations are necessary in order to obtain the expression (34) of the 
Bi:) coefficients of Q‘,”(x) in terms of the coefficients A:”,‘+l(f) of the Pj”’(x). The 
expression (25) is substituted for the Pl”’ into relation (A2.4). Then using relation 
(A1.3), one obtains an expansion of QLN’(x) on the basis of the Hermite polynomials. 
Since this expansion of a:”’ has to be identical to expression (26), one obtains the 
required relation (34). 
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